14 research outputs found

    Examining Trajectories of Elementary Students’ Computational Thinking Development Through Collaborative Problem-Solving Process in a STEM-Integrated Robotics Program

    Get PDF
    Developing K-12 students’ computational thinking (CT) skills is essential. Building on the existing literature that has emphasized programming skill development, this study expands the focus to examine students’ use of underlying CT cognitive skills during collaborative problem-solving processes. A case study approach was employed to examine video data of 5th graders engaging in an integrated-STEM robotics curriculum. The findings reveal that students applied algorithmic thinking most frequently and prediction the least. They recorded most debugging behaviors initially in the problem-solving process, but after accumulating more experiences their uses of other CT skills, including algorithmic thinking, pattern recognition, and prediction, increased. Implications for developing young learners’ CT skills to solve real-world problems are discussed

    A Remote Medical Monitoring System for Heart Failure Prognosis

    No full text
    Remote monitoring of heart disease provides the means to keep patients under continuous supervision. In this paper, we introduce the design and implementation of a remote monitoring medical system for heart failure prediction and management. The three-part system includes a patient-end for data collection, a medical data center as data storage and analysis, and a doctor-end to diagnosis and intervention. The main objective of the system is to prognose the occurrence risk of heart failure (HF) confirmed by the level of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) based on the changes of the patients’ (systolic and diastolic) blood pressure and body weight that are measured noninvasively in a home environment. The prediction of HF and non-HF patients was achieved by a structured support vector machine (SVM) classification algorithm. With the present system, we also proposed a scoring method to interpret the long-term risk of HF. We demonstrated the efficiency of the system with a pilot clinical study of 34 samples, where the NT-proBNP test was used to help train the prediction model as well as check the prediction results for our system. Results showed an accuracy of 79.4% for predicting HF on day 7 based on daily body weight and blood pressure data acquired over 30 days

    Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.

    No full text
    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs
    corecore